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I. Introduction

The major objective of the theoretical investigation reported here
was to obtain relations between the actual absorption and scattering
coeificients of powders, and the predictions of these coefficients which
are often made by applying the Kubelka-Munk (KM) theory1 to measured
values of diffuse reflectance from powder samples. Another objective was

y evaluate one of the conventional metheods Tor obtaining imaginarv ratfrac-—
tive indices from absorption coefficients, and to suzgest and implement
corrections to this method, if possible. A third objective was to ascer-
tain to what extent the standard Mie theory and radiative transfer theory
predictions of diffuse reflectances from model powder samples agree with
experimental results from corresponding actual powder samples.

The first and second objectives above were partially attained. The
results of the investigation show that the KM theory predicts values of
absorption and scattering coefficients that are sensitive to incident
beam direction and sample optical depth, and that the abovementioned
method for conversion from absorption coefficients to imaginary refractive
indices is subject to large errors. However, the third objective mentioned
above was not achieved, inasmuch as actual experimental results from powders
which could be modelled easily were not available.

The investigation proceeded on two levels. The first level involved
computer simulation of several realistic powder samples, using standard
Mie theory and radiative transfer theory algorithms, which allowed
numerical comparisons of péedicted vs. actual absorption and scattering
coefficients, and cvaluatfon of the conventional relation between imaginary
index and absorption coefficient. The second level involved the derivation

and fundamental study of a new equation of radiative transfer, which should

T P it S o v — .y
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be significantly more accurate than the standard one in practical applica-
tion to closely packed random scattering media which contain strongly
bsorbing or strongly reflecting particles.

This report is structured for readers of three different levels of
interest. The reader who needs only a synopsis just a bit more detailed
than the abstract n==d consider only section 1T, with perhaps a referencs
to the glossary of symbols in section III. The reader who wants a look
at tne computational vesults, or at the theourztical concents leading to the
new equation of radiative tramnsfer, can peruse sections IV and V. Finally,
the reader who is interested in depth can delve into the appendixes.

Some of the material in this report will soon be submitted for
publication in J. Opt. Soc. Am. and/or Applied Optics. It is planned to
write two papers based on this investigation, one dealing with the new

radiative transfer equations, the other with the computational results.

ITI. Summary of Results and Prognosis

A. Summary

The major results of this theoretical investigation are as follows:

1) The use of the Kubelka-Munk (KM) theory to obtain values of the
absorption and back-scattering coefficients of random scattering media
from diffuse reflectance data leads to errors < 20%, over a range of
incident beam angles. These errors result primarily because the KM
theory neglects the effect of incident beam angle. The errors might be
partially removed by making use of the Reichman theory.2 See section IV
and appendix C for details.

2) The use of the plausible hypothetical relation a = (Nv) (47c/A),

in order to determine a value of the imaginary index k of a substance

VG T e T v .
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from a presumed known value of the absorption coefficient o of a random
scattering medium composed of particles of that substance, is subject to
errors of a factor of two to three. In most cases, these large errors can
be removed only by recourse to the full Mie theory relation between «

and «, which is very difficult to invert in general. See section IV and
appendix D for details.

3) The use of the standard differential equation of radiative transfer
for closely packed strongly reflecting or absorbing scattering media
probably leads to significant error. For such media, the new difference
equation of radiative transfer which was developed during this investiga-
tion should be used. The use of the in principle incorrect far field
phase function, rather than a more nearly correct near field one,
probably makes no pratical difference. See section V and appendixes E,

A, I for details.

B. Prognosis

Future work in this area should include the following:

1) A thorough investigation of the new difference equation of
radiative transfer, and comparison with the standard theory, for realistic
cloce-packed model scattering media of practical interect. Suct media
include both highly reflecting and highly absorbing paints and coatings,
powders containing strong reflectors or abserbers, anc the Tiwke.

2) Another look at the conventional averaging over different kinds
and sizes of particles in close-packed media composed of strongly absorb-
ing or strongly reflecting particles. Preliminarv consideration bv the
author indicates that the standard method of averaging (see appendix A)

may lead to significant errors, for such media. TIn addition, the effects

of polarized light and non-spherical scatterers should be evaluated.
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3) An error analysis for the application of the Reichman theory
(appendix C), rather than the KM theory, in reduction of experimental
diffuse reflectance data, in cases where the incident beam angle is
not near 60°.

4) An attempt to invert the Mie theory calculations, so that an
imaginary and/or real index of refraction could be obtained easily and
accurately from known values of the scattering and absorbtion cross-—

sections. (See appendix D).

ITI. Glossary of Symbols

A = wavelength, um

(ni,Ki)E (real, imaginary) refractive indices of ith optical type in a
random scattering medium
- . : . ith .
m, = - 1'<i = complex refractive index of particle type
fi(r) = size distribution of spherical particles of type i as function
of particle radius r; dr fi(r) =1
2 ; / .th -
Ni = number density of particles of i type, um

N = total number density in medium = z N,
3 1 th
v, = dr fi(r)(Anr /3)= average volume of i  type particle, im
0(8) differential scattering cross=section of the average particle

in a medium as function of scattering angle 6

1(s,s')= differential cross-section for scattering from direction s’ to
direction s.

(o o) ,0 __.) =(absorption, scattering, extinction) cross—sections of

abs’ ‘sca’ “ext

’ ) : 2
an average particle in the medium, (1m)

(a,B,y) =(absorption, scattering, extinction) coefficient of the medium,
-1

a = No B = No i NcC .

m
. Xt
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p(8) =

p(o)(u,u') =

1+

(K,S)

"

(=%
i

IV. Computer

A.

8/y = single-scattering albedo of the medium.

phase function of the medium. p(8) = 4w0(0)/0ext

azimuth ayeraged phase function of the medium, as function

cosB, p' = coso'

of u = , for scattering from direction 8'

to direction 6. Here, 0, 0' are measured from the forward-

direction normal to the plane surface of a sample.

1 1
1
5YJ 8 J aw' p uaun) =
(o] (o] —1
coefficient, ym .

forward

average ( back

)-scattering
mass density of model powder, gm/cm3.
mass density of type i powder constituent, gm/cm3

angle of incident beam w.r. to the forward-direction plane
surface normal to the sample.

Kubelka-Munk (KM) (absorption, scattering) coefficients,

=1

um . K = 2a, S = 2B-.

Thickness of sample; optical thickness T = yd.
KM (absorption, scattering) coefficient evaluated from diffuse
reflectance data, for each (eo,d) considered.

diffuse reflectance of a plane parallel sample of thickpess d,

on a bliack background.

diffuse reflectance of an infinitely thick sample.

Modelling of Powders

Method

Given the number densities, optical constants, and size distributions

of the spherical particles in a random scattering medium, standard Mie

theory algorithms3 yield the quantities o

p(0).

G,B,Y,U(Q) and

o o
bs’® sca’ ext’

However, for closely packed media, such as powders, a given particle
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sees the near zone or induction zone fields, rather than the radiation
zone fields, from its neighbors. Therefore, it is likely that a suitably
defined near field phase function should be used; see appendix A for
details. In this work calculations were done with both the standard
asymptotic phase function, and a near field phase function, and compared.

For an actual powder sample, the particle number densities Ni are not
known a pridri, but the total mass density and the fraction by weight
of each constituent can be regarded as given. Appendix F details the
conversion of these data to Ni'

In an actual powder, the size distributions of the various components
are difficult to determine accurately. Only good estimates of the mean
particle radius and the width of each distribution may be available. 1In
modelling powders, therefore, recourse is made to several size distributions
which are thought to be realistic. The various distributions used in this
work are detailed in appendix G; these distributions have been used recently
by other authors.4 It is important to remark here that, for the computer
modelling comparisons which are made in this work, the actual size distribu-

tions are irrelevant, since no comparisons are made with actual experimental

data. However, realistic choices were made for the distribution parameter:
in the modelling.
From tne phase function p(¢), the azimuth averaged phace function

P(O)(u,u') is found by the method detailed in appendix H. Since only total
forward and backward radiation fluxes are needed in this work, only p(o)(u,u')
is needed, rather than the full azimuth-dependent phase function.

Given p(o)(p,u'), the thickness d of a plane parallel sample, and the

incident radiation beam direction 60, standard radiative transfer theory

- v ' Y . ES g e " T ——— ’ e
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algorithmsS yield the total diffuse reflectance and transmittance of the
sample. The doubling method algorithms which were used in this work are
detailed in appendix J; the relevant radiative transfer equation to which
these were applied is given in appendix A, Eq. (A19). A method used by

experimentalists ’

to obtain values of the absorption and scattering
coefficients of a medium from diffuse reflectance data involves the Kubelka-
Munk (KM) theory.] This theory is detailed in appendix B. In this investi-
gation, the diffuse reflectances (Rd,Rm), which were calculated as described
above, were inserted into the KM relations (B2). The resulting quantities
R(Go,d), §X®o,d) were compared with the known (calculated) values of

K = 2a, S = 28_, for each model powder cousidered.

A two-flux radiative transfer theory which takes incident beam direc-
tion into account has been developed by Reichman.2 This theory is described
in appendix C. In this invetigation, the accuracy of this theory was checked
by comparing its predictions of Rd with thoseof the accurate doubling method.
As discussed in appendix C, it appears that experimentalists might achieve
better approximations to (X,S) by using measured values of (Rd,Rm) with
this Reichman thecry than they can with the standard KM thecrv. if thev
are limited to an incident beam direction e quite different from 60L°

The computer programs which were developed for this vork are decceribed
briefly in appendix K. Complete documentation and listing is available

from the author on request.

B. Results

Numerical results are reported here for a selected number of samples

and wavelengths.
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The three samples reported were constituted as follows: Sample 1,

BnSOA; Sample 2, 33504 plus carbon; Sample 3, model dust + BaSO that

4;
is, the model dust contained carbon, azomonium sulfate, and clay minerals.
Table 1 gives the relevant parameter values which were assigned. These
values were quotcd8 as typical for these material constituents of
atmospheric dust aerosols. The BnSOA was included in all these model
samples so that they would be realistic models of actual powder samples
used in some diffuse reflectance spectroscopy experiments.

The BaSOa particles have a fairly narrow size distribution centered
around 0.5 ym mean radius, approximately. The carbon and (NHA)ZSOA are
similarly sharply peaked, but are centered roughly around 0.25 um
radius. The clay minerals distribution is fairly broad, between 0.03 um
and 5.0 um.

The values used for the refractive indices n, k, and the mass densities
p, are in agreement with those given in several handbooks, such as that of
the Geological Society of America (GSA).9 However, the GSA handbook lists
the mass density of graphite as 2.267 gm/cm3, significantly larger than
the figure 1.7 rm/cm3 wvhich was used for carbon soot in this work. t was
Gdecided to use the lower value, the one queted to this author as appropriate
for soot. Again, it is worth emphasizing that the trends revealed bv the
following results are insensitive to the accuracy of the mocelling of an
actual powder sample.

The following tables display the results of the computer calculations

for these model samples, at wavelengths A = 0.6 pm and 1.0 ;m.
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Table 4. Total diffuse reflectances for the modz1 samples from
the accurate multiple scattering calcu'.tions vs. * Leichman theory
(appendix C).

Wavelength X = 0.6 pym. Far field phase functions were used.

Sample Components T 0 Reflectances Rd

Multiple S
Scattering | Reichman

F 1 Baso, 0° 0.7306 0.8217

16 32" 0.7309 0.8234
60° 0.8155 0.8595 =8

0° 0.9184 0.9503

64 12° 0.9185 0.9507

50° 0.9441 0.9608

0° 0.9773 0.9871

256 12° 0.9774 0.9873

60° 0.9845 0.9899

2 Basa, 0° 0.7101 0.7976

s 16 12° 0.7104 0.7995

60° (.7982 0.8397

0° 0.8406 0.8745

64 s & i 0.8407 0.8756

60°  |0.8872 0.9003

0° 0.8460 0.8758

256 12° 0.8462 0.8769
--ﬁ--.“,,_,m,._““__W_."_,,____§9?vh,.w 0.8909 _ 10.9013 A

3 a0, 0° 0.7280 0.8186

i 16 12° 0.728 0.8203

60° 0.8132 0.8570

y 0.9057 0.9370

64 12° 0.9058 0.9375

__mAW—gﬁmw_OAM9 0.9502

0° 0.9400 0.9533

256 12° 0.9401 0.9537

. 60° 0.9584 0.9631

- g s .
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Table 6. Near field vs. far field comparisons of reflectances
given by the accurate multiple scattering calculation and by the
P ichman theory for sample 2 (BaSO[ plus Carbon).

+

Wavelength A = 0.6 um.

——— . e b e S =
Optical 6 D e e Rcflgcgances Ryq
depth o{Multiple Scattering |  Reichman Theory
yd=t Theory
FAR NEAR FAR NEAR
0° 0.7101 0.6769 0.7976 0.7938
16 12° 0.7104 0.6807 0.7995 0.7951
60° 0.7982 0.7776 0.8397 0.8321
| — el
0° 0.8406 0.8264 0.8745 0.8729
64 1l 0.8407 0.8283 0.8756 0.8737
60° 0.8872 0.8784 0.9003 0.8962
(055 0.8460 0.8340 0.8758 0.8744
256 12° 0.8462 0.8358 0.8769 0.8752
60° 0.89021 0.8835 0.9()1”5J 0.8974
-;‘f————*t—'ff = T S . - ey s - :_-
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Table 9. Total diffuse reflectances for the model samples,
from the accurate multiple scattering calculations vs. the Reichman

Theory (appendix C).
Wavelength A = 1.0 yum.

' Samble '—Yi{{{ZST"Hébli{"'Yi; Ref lectances R
® = vd Multiple Reichman
' Scattering
1 0° 0.7570 0.8368
BaSOA 16 12° 0.7603 0.8384
i o 60° 0.8354 0.8734
0° 0.9280 0.9550
64 12° 0.9290 0.9555
. 60° 0.9512 0.9651
0° 0.9800 0.9884
' 256 13 0.9803 0.9885
60° 0.9864% .9910
2 0° 0.7381 0.8145
' Baso, 16 12° 0.7415 0.8163
and 60° 0.8198 0.8555
Caxbon 1 ; il
' r‘ 0° 0.8572 0.8855
64 122 0.8590 0.8866
s o 60° 0.9002 0.9106 |
‘ 0° 0.8619 0.8868
256 12° 0.8636 0.8878
60° 0.9034 09115 |
l 3 0° 0.7548 0.8341
BaSO 16 12° 0.7581 0.8357
Dust 60° 0.8335 0.8713
' 0° 0.9174 0.9438
64 12° 0.9185 0.9444
e s 0.9437 0.9563
l 0° 0.9487 0.9595
256 12° 0.9493 0.9599
' 60° 0.9648 0.9685
- S UEN — S——
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C. Discussion of Results

1) Telation between imaginary index and absorption coefficient.

The discussion in appendix D shows that, in general, the plausible hypo-
thetical relation « : Nv(4mk/2) is badly violated. The results in Tables

2 and 7 reinforce this conclusion; the values of o' vs. a show discrepancies
of a ﬁactor of two or three. For example, following the reasoning in the
latter part of appendix D, one could attempt to predict a value for k of
carbon, from the correct calculated value of a given in table 2, for

A = 0.6 un., using the plausible relation above. From table 2, sample 2,
for carbon, v = 3.142 x 1072 (um)3, Ne 3708 210" ()", &= 5,205 x 1074
(um)—l. The hypothetical relation above yields k¥ = A a/4m Nv = (.21, rather
than the correct (input) value k = 0.6.

2) Relation between (¥,S) and (K,S).

Tables 3 and 8 display the values of K,S calculated from Eqs. (B2),
using the accurate multiple scattering values of (Rd,km). Experimentalists
often hypothesize that these values should be equal to (K = 2a, S = 28_),8
regardless of the beam angle of incidence or of the optical depth of the
sample. The calculated results in these tables show that (E;g) depend
somewhat on both 00 and d. However, in the cases of interest, samples 2
and 3, setting 2a equal to any of the K values leads to an error of less
than 20%, which is probably acceptable at present. But the values of S
seem much closer to B_ itself rather than to 2f_, the expected corrclation.

The only large discrepancy between K and 2a occurred at both wvavelengths
for the pure BaSOA sample. Practically speaking, this is irrelevant, since

the absorption due to BuSOa in a mixture is probably negligible in most

T e e S i Ty — — ———y
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actual experimental cases, and is certainly negligible in the model samples
treated here.

The computer calculations are accurate enough so that the above-mentioned
discrepancies (S = g_ rather than 28_, K >> 2a for the very weak absorber
BaSOa) are probably real, not just artifacts of the arithmetic. If so,
it may be conjectured that, since the model samples all contain closely
packed });aSO4 particles, which are strong reflectors, the origin of these
discrepancies may just be what is discussed in appendixes E and I, namely,
the failure in principle of the standard radiative transfer equations for
closely packed strongly reflecting or absorbing media.

3) Near field vs. far field phase functions.

The underlying theory for the near field phase function is discussed
in appendix A. T hles 5 and 6 present comparisons. Although the angular
dependence of the near field phase functions is significantly different
from that of the corresponding far field ones, the total reflectances were
not very different, for the samples considered. Table 2 shows that the
packing fraction, the ratio of the actual volume of an average particle to
the average volume subtended per particle in the mixture, equal to Nv, was
of the order 0.5 for these samples. Tt is possible that larger packing
fractions would produce greater differences between near and far field
predictions of reflectances; this remains for future work.

4) Reichman theory vs. full multiple scattering theory.

The Reichman theury2 is discussed in appendix C. Tables 4, 6, and 9
give comparisons. The discrepancies are generally around 10%, so this two-
flux theory, which takes into account the incident beam direction, could

in principle be used to evaluate (K = 2a, S = 28_) from reflectance data.

——T T - 3 " s - S ——
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The formulas are 1 e complicated than those of the KM theory, and more
data is needed for each attempted evaluation, but more information about
Mie theory parameters is obtained. Lacking an error analysis, it is
difficult to estimate whether the Reichman theory would be more accurate

in practical predictions of (K,S) than the KM theory.

IV. Theoretical Studies

The fundamental theoretical studies which were done during this
investigation centered on the problem of multiple scat::ring in closely
packed strongly absorbing or strongly reflecting media. Two major questions
arise in this problem. The first question asks whether the standard differ-
ential equation of radiative transfer should be applicable to such media.
The second, which arises only if the first is auswered negatively, concerns
whether a suitable equation of transfer can be found and solved.

In this work, the first question was answered negatively, and the
second affirmatively. The detailed derivations and calculations are pre-
sented in appendixes E, A, and I. 1In appendix I, it is shown that the new
radiative transfer equation should yield significantly different results
than the standard equation, in many cases of practical interest.

Since the proposed new equation of radiative transfer may have practical
consequences, it is important to achieve a thorough understanding of the
logical steps which lead to the equation. For the interested reader, the
logic pathway starts with appendix E, then goes to appendix A, then finally
to appendix 1.

In appendix E, a model one-dimensional random scattering medium is

constructed. The medium consists of a stretched frictionless string, with
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randomly but homogenously placed insertions of segments of a frictional
string. This medium contains analogies to ecvery major feature of a
3-dimensional random scattering medium. The wave motions are of course
the transverse oscillations of the siring. The exact equations for the
intensity transfer through the medium, which are the complete analogs of
the equations of radiative transfer in a 3-dimensional medium, are derived
and solved without approximation. The equations turn out to be difference
rather than differential equations; they reduce to differential equations
of standard (two-flux theory) form only if the inserted scattering segments
are very weak absorbers and reflectors. The exact solution of the correct
difference equations for either strongly absorbing or strongly reflecting
segments is quite different from the incorrect differential equation
solution, and the expressions for transmittance and reflectance are also
quite different.

In appendix A, the derivation of the usual 3-dimensional differential-
equation of radiative transfer5 is done in an unusual manner which is
partly analogous to the derivation done in appendix E for the one-dimensional
case. Indeed, a difference equation (Eq. A6) arises in this derivation for
the 3-dimensional case, and it is necessary to require yf << 1 in order to
achieve the usual differential equation (A9). Here, y is the extinction
coefficient of the medium, and 9 is the average interparticle separation.
If y% << 1, then the change in intensity across a monoparticle layer is
negligible. But if yf# is not very small, there will be enough change
across a monoparticle layer that the difference equation results will
disagree with the differential equation results. The value of yf which

should be used as a break point between the two equations depends of course
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on the accuracy desired in a calculation. If accuracy = 1% is de:sired,
then the difference equation, rather than the standard differential
equation, should probably be used if y2 > 0.01.

Although a near field rather than a far field phase function should
be used, in principle, for closely packed media, the computational results
quoted in section IV imply that, practically speaking, the two are
equivalent.

In appendix I, the difference equation analogs of Eqs. (A18), (A20)
are derived. These difference equations are applicable to problems with
(x-y) translational invariance in which azimuthal dependence is irrelevaat,
such as the problems which were treated in this work. Methods of solution
are discussed; a combination of the many-flux method10 and the doubling
method is suggested. It is also conjectured that prescent Monte Carlo
methods might already be solving the difference equation, since these
methods treat the radiative transfer in discrete steps, collision by
collision.

Also in appendix I, the two-flux difference equations, analogous to

the KM equations, are developed and solved. The results are contrasted

with the corresponding KM theory results. By means of two realistic examples,

it is shown that the discrepancies between the two theories probably have

practical significance, In fact, one of the examples involves the realistic

B3504 powder model which was used in the computations in this work. The
parameter values in table 3 lead to B_£ = 0.283, indicating that the
difference equations, rather than the differential equations, probably
should have been used in all the computations which were reported! Time

did not permit this; it is left for future investigation. However, the

T . ey . T3 e —————  — —
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principal source of error, in obtaining values of (K = 2a, S = 28_) from
diffuse reflectance data by means of the KM theory relations (B2), lies

in the neglect of the incident beam angle dependence; this neglect would
not be removed merely by use of the difference equation analog to the KM
equations. And, of course, multiple scattering has nothing to do with the
large error in the hypothetical relation a 2 Nv(4mk/)) which has been used

to obtain values of k from the value of K = 2a determined as above.

——
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APPENDIX A

RADIATIVE TRANSFER THEORY AND NEAR FIELD PHASE FUNCTIONS

Imagine a beam of radiation incident at some angle Oo with respect
to the normal to the plane surface of a homogeneous random scattering
medium. If the beam has a cross-section broad enough to subtend a very
large number of particles in the medium, then, for purposes of analysis,
the actual collection of particles of different optical types and sizes
may be replaced by a collection of identical "average'" particles, as
follows.

Define: N = total number density; Ni = number density of type i
particles; fi(r)dr = fraction of type i particles with radii in (r, r+
ar); Jdr fi(r) = 13 oi(r,g,g') = differential scattering cross—-section
of a particle of radius r, type i, from direction s' to S; oixt(r),

i

i
o r), o
sca( )s al

q(r) = (extinction, scattering, absorption) crc s-sections
)&
of such a particle. Then the average particle has the following differ-

ential, extinction, scattering, and absorption cross-sections:

0(s,s") : N_l 2 Nifdr fi(r)oj(r,§,§')
! (A1)

=Te. i i
Ooxt,scn,nbs N ZNiIdx fi(r)o (r)
i ext,sca,abs.

Here and in what follows, s, s' are unit vectors. TImagine the medium
divided into identical cubical cells, with side length equal to the

average interparticle spacing £, with 23 = 1/N. ©Each cell contains one

average particle, on the average, located randomly within the cell. As

SU—
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long as the randomness in particle location extends over a wavelength or
more, radiation intensities may be used, rather than phase-sensitive
amplitudes.

Consider the cell with center at position x, and radiation on this
cell in direction s in dQS. The orientation of a cell is immaterial, so
it may be chosen with two of its faces perpendicular to s, for any s.

Therefore, the incident power on the cell is
P, do_ = 9.2 L(x-28/2,8)da_, (A2)

where I(x-2s/2) is the intensity on the incident cell face, which has a
normal parallel to s, and a center at x - £s/2. This beam encounters
the average particle somewhere in the cell, and scatters and absorbs
radiation. The power lost out of dQS is thus

1Q = x—f.s/2) 37 s
ext S oext A (” - . S (A3)

On the other hand, part of the power from incident beams in all other

directions gets scattered into qu by the particle; this power is

Psca dps = dQSJdQS.0(§,q')I(§-Q§'/?,5') (AL)

where I(x-£s'/2) is the intensity at an incident cell face, with

center at x-£s'/2, normal parallel to 8. If Po dns designates the

ut
power emerging from the cell in dQS, through the exit face centered at

x + 15/2, then

P de_ = 02 I(xHs/2,s)da_. (A5)

- - v mG TR e S e < - o n . e+ e et
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Energy balance requires P =P = P + P or
&y bs q oul in ext sca’

I(xt+s/2,s) = (l—YE)T(3—25/2)41%(4n)—]fd9g,p(§,§')l(g-lg'/Z,g'), (A6)

where

{ ¥ = Nuext = extinction ceoefficient (A7)

p(s,s") = (4ﬂ)0(§,§')/oext = phase function. (A8)

Remember, 23 = N ~. Now make a Taylor expansion about the point x. If
the change in I over distance £2/2 is small, (which will be the case if
Y% << 1), then terms proportional to yllyxll may be neglected, and Eq.

-
D
A6 reduces to the standard radiative transfer (RT) equation ,

Y_l§'Yx1(z<,§) -1(3:,§)+(’*1r)_]Id9q. pls.s'YI(x,s8%). (A9)

The quantities (o,f), the (absorption, scattering) coefficients, are
defined by

B = No (A10)

a © No .
sca

abs’

Note that y = o+f, and that the phase function is normalized so that

J
s sca ext o

(An)_]Id& p(s,s') = No /N = 8/y = w_, (A11)

the (single scattering) albedo.

This method of derivation makes it clear just how the scattering
properties of the individual particles in a random mixture enter into
the radiative transfer equation.

An interesting point arises for close-packed media, where a cell

S CRELE sl el S . =X e
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is not much bigger than the average scattering particlc. The above
method of derivation makes it ¢l 1 that the scatterer in the next cell
(in direction s) secs the near zone and/or induction zone fields,
rather than the radiation zone fields, from the scatterer in the given
cell. Randomness cf scatterer location extending over distances > A
still allows use of intensities rather than phase-sensitive quantities,

but o(s,s') should be replaced by One1r(§’§') in the expression for

P , where o (s,s") is a suitable near-field cross—section.
sca near ~’~
In this work, onear(n,s') was defined as follows. Consider tlic

Mie scattering problem, with a spherical scatterer centered at the
origin of coordinates, and a plane electromagnetic wave of unit power/unit
arca incident in direction s'. Let S(x,x,s') © tiame-averaged Poynting

vector of the scattered fields at distance x in direction x. Then

The near field scattering cross-section is defined in this werl by

2 iy
a 0O = a s ' 7 ¥ 4
Oncar(§’3 )(L,S =x s S(x,s,s )dS.S (A12)

Note that as x - «, Un(qr(g,g') > o(s,s"'), the usual differential cross-

section defined in terms of the asymptotic fields. The distance x was

taken to be equal to some factor times the particle radius r, for each

particle in a mixture, in this work. FExplicitly, O ear W3S defined by
=] J
R s,8') = N } Nijdr fi(r)ci(br;r,f,S'); (A13)
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that is, the fields used in evaluating the cross-section of a particle

of radius r orc those at a distance Fr from the particle's center, since

these are approximately the ones incident on the neighboring particles.

If N = 1/23 is the overall number density, v = NN]XNiVi is the volume of
1

an average particle, then the factor F should be chlosen as

F= @33 - anmt’3 . (A14)

Note that F > 1 as long as there are air spaces between particles, which
there must be if the medium is to be a random scattering medium.

It is straightforward but nontrivi.al11 to show that the above defini-
tion of the near field cross-section yields

(A15)

A ]
g 8,s')dQ2 = 0o
J near(~’~ ) s sca’

4
where Ugca is the conventional asymptotic total scattering cross-section,
independent of x. Since any absorption by the scatterer is strictly

localized to regions within the scatterec:r, conservation of energy shows

near
(near) _ )

that o + o
Xt sca abs ext’

also independent of x. Define the
near-field phase function by

Ll
SRt =,
noar(~’3 ) o

~1
- = > C:' (
pnenr(§'§ R Nonenr(ﬁ’l /v, (4m) J dzs P
- (A16)
This phase function has a different angular dependence than the far
field one, although its normalization is the same. An appropriate

radiative transfer cquation for close-packed random scattering media is

then
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1

Y  §-9I(x,8) = -I(x,s) + (4n>"’f«m p._(8,8")1(x,8"), (A17)

s' Ynear'”

as long as yf% << 1. If yR < 1, a simple differential equation caonnot
be obtained from Eq. (A6); this case is considered in appendices E and
Xe

For problems with (xy)-translation invariance, which are the only

ones treated in this work, Eqs. A9 and Al7 reduce to the form

1 2m
9l
u '5?(2’“,¢) = _YT(:"’“)¢) + -.ZTJ d“'Jd(b' P(U:¢,N"¢')I(Z,U',¢'), (A]S)
-1 o
=il . :
where (p=cos "u,9) are the polar angles of the unit vector s with respect to
the z-direction. Since only total fluxes (transmitted and reflected)
are of interest ia this work, the relevant radiative transfer equation
is obtained by integrating Eq. (Al18) over all azimuth angles ¢.

Define
2m ' 21
o =L ) (0) (] = =1 Yo
1(2,11) :(2,[) Id‘t’ I(")U’¢); P (U’“ ) = (2") IdQ‘ P(U,C’-U s )°
o 0 (A19)

Then Eq. (A18) reduces to

1
5t ,
" -g-,,—(z,u) = -yI(z,u) + _12“[ dp' p(o)(u,u')l(z,u') (A20)
-1

which is the standard azimuth-independent radiative transfer equation

. _ ; g (o) 'y g
for problems with (xy)-translational invariance. Here, p (u,u') is
formed from either the near field or far field phase functions discussed

above.

-, — 3 .y —r—y —
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If there is a uniform incident beam, such that T,k (0,p,¢) =
in

1
> — £ byem > = i B — & 1 . =
mFS (p po)u(g ¢0), then Ijn(O,u) 5 Fé (u “0)’ ind [jn(z,u)

%’Fé(u—uo)c—Yx/U. Substituting this into (A20), with I(z,n) = Ij (z,n) +
]

Idi(z,u), yields

T, . -yz/u

. SETE 2 ¢ (o) ' ' ¥ (o) o
L YIdi(Z,U) + 7 YJd“ P (y,n )Idj(z,u ) + 4 Fp (”’“o)(

-1
(A21)

which is the relevant radiative transfer equation for the diffuse inten-
sity Idj(z,u). It is this equation which was solved accuracely, using
computer algorithms based on the doubling method of Van de Hulst and
Hansen, for media of various thicknesses d (optical thickness 1 = v.1).

Both near and far field phase functions were used and compared.

b
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APPENDIX B

KUBELKA-MUNK THEORY

- 11085 .
The Kubelka-Munk (KM) theory is equivalent to the Schuster two-
12 s 2
flux theory of radiation transfer in plane parallel homogeneous random

scati oring media. In Eq. (A20), assume that

I€z,u) = ¥, (2), n > 0; I(z,n) = I (2), u <0

+

and integrate Eq. (A20) over 0<u<l, and over 0z>p> -1. This yields the

KM equations

d(bn‘
F ey = -(K+S)¢‘+ + 59
(r1)
d@_
d—z— = (K"'S)’f’_ = S¢+

1 1
where K = 2a, S = 28 ; B, = % Jdu Jdu' p(O)(u,tt'u'); ¢, = Jdu e I, (z) =
1 ] o o g TR "
0 Ty = (magnitude of) fluxes; and Y = a+B+ + B_. Note that & is twice

the back-scattering coefficient, and K is twice the absorption coefficient,
. TR ; N E .
just as in the usual ad hoc derivation of the KM equations . 1In this

work, the sample had thickness d, and was placed on a black background of

reflectance Ri’ = 0. The solution of Eqs. (B1), subject to the boundary

iti 3 ¢ é = & & = R = 1o s N ~ol¢ 1 s
conditions ('._/‘4.)?;0 Rd, (¢_/ +)7.='d Ig 0, yields the KM relations
7
g R R 1-R R
T ==, 8d = ——— tn =] , (B2)
4 2 s
S 2R 12 1-R, /R

where R_is the reflectance of an infinitely thick sample. These relations

———————— R T SR T G T i e 3 T T I — - — —— -
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have often been uscd to evaluate K, S, from measurcd values of R R .

d?* e
. AT X 13 ar

In the usual ad hoc derivation of the KM theory ™, the incident
illumination is supposcd to be either diffuse and isotropic, or a beam
at 6§ = 60° (un = 1/2).

o o

Note well that the two-flux approximation to the full RT Eq. (A20) is

very crude, and that all directional effects which would be caused by

beam incidence at an arbitrary angle 00, rather than by diffuse isotropic

incidence, are lost.
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l’ APPENDIX C

REICHMAN THEORY
‘ This two-flux theory, developed by l\‘ci('h'n.n:za starts from Eq. (A21)
3 rather than (A20), so it represents an attempt to include incident beam

directional effects. In Eq. (A21), assume that
Idi(”“) I+('/.), u>0; Idi(z,u) = F £z}, u<0; F = 13

and integrate Eq. (A10) over 0<psl, and over 0>u> -1. This yields

‘ do, -Yz/uo
— = - (EFSYE. + SO
s (K ‘%)9+ S YP+(uo)e
i (c1)
dé -yz/u
— = (R+S)0 - SO, - YP_(n e i
i dz = + -0
where K = 20, § = 28 , ¢ = iy /2, just as in Appendix B; and
1
cal | (o)
’ i ! Ll (1) 8% s
P Cu ) =3 I( O A CPE 0 (€2)
o

Equations (Cl) are very similar to the KM equations (Bl), except that

hexe, ¢, are diffuse fluxes only; the incident flux is C‘],n(z) =

1 :

1 =vz/n M —y'v./x!0

f dy p -1 SCu—p e = — @ . Boundary conditions are & (d) = 0
) 0 =

(¢}

(black background), C'_'r(()) = 0. The reflectance is R(l (?‘_(0)/(!'1_'1((\)

In general, the solution of these equations with these boundary

conditions yields

l . for a sample of thickness d.
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I SD+sinh(Ld) + LD_ exp—yd/uo ]
9 e LI U s O I
[ - (K+S) cosh(Ld) + L sinh(ld) J

2 .
where L2 = k% + 2KS, and D, = y[(K+S # Y/uo)P+ * SV_]/(LZ—YZ/Hg)-
& » A

2 -
Rd = Ir— c3)
o

In the special case that = % (argle of incidence = 60°) and

B+ SR 5 P+ =P = w0/4, (isotropic ccatterers will yield this),
Eqs. (C3) yield just the KM relations (82) for K/S and Sd in terms of
Rd and R_. 1In all other cases, the expressions for K/S and Sd are
different.

This means that the original KM theory should be just as good an
approximation as this modified theory if 0o = 60°, and if the scattering
is isotropic; but that the KM theory should be less accurate than this
modified theory for beam incidence at other angles, and/or for non-
isotropic phase functions.

In this work, the predictions of R,, R _from this modified theory

a4’
wave checked against those from the accurate doubling method solutions

of the RT equations, and were found to agrec within 157 for all samples
which were modelled. Similar agreement has been noted by Roichmanz-
Equations (C3) may be rewritten in the followiung form, with oxp(—yd/un) 0 1 -

it bRK(?EE}?ﬂ,“ a_)

d 2 - PO
(1+RK) —4u0(1~kK)

’ ((1[0)

- 21. = [ 1924 +u P
where K/S = (l—RK) /ZRK, 8, = P+(u0)[(| } R/S)UO t (1 + K/2S8)] Flb:_(uo)>

d)/(] + R2 c—ZLd).

K

N S

For samples of optical thickness yd > 4, this is a very good approxima-

tion. In principle, measurement at a given v of R and Rd at three
¢ o
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other d, will allow inversion of Eq. (C4) to obtain values of the four

unknowns RK, L, a . In turn, knowle!ce of these four quantities

s
allows determination of the Mie theory parameters (a,8+,y), or, since

N is known, the cross-sections ¢ for the average particl=

a o
bs’ “sca’® “ext
in the medium. If the particle types, number densities, and size
distributions are known reasonably well, Mie theory computer algorithms
could be used to zero in on values of the real and imaginary refractive

indices of each type of particle in the medium. This possibility was

not pursued in this work, but it seems to merit further study.

T Y L T R T g T 5 i — .5 T o —— = = — S ——
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APPEIDNIX D

RELATION BETVEEN v AND «

Consider a randon scattering medium composed of N particles/unit
volume. For convenience in what follows, let all the particles have
the same radius, ¥, volume v = 4ﬂr3/3, and the same refractive index,

m = n-ik; the discussion presented below can be extended trivially to
include the general case.

As loag as the arrangement of particles is homogeneous, but the
randomness in the location of each particle is greater than a wavelength,
A, the condition~ for applicability of the standard radiative transfer
equations (A9) are met, and the absorption coefficiert, «, of the medium

is defined in terms of the Mie theory absorption cross-section, © by

abs’

(Db1)

& = Noabs .

The derivation of the KM equations in Appendix B, and the Reichman
equations, in Appendix C, makes it clear that the KM absorption
coefficient K is defined by K = 2a.

Now imagine that this collection of particles is fused, with the
particles distorted as necessary and assembled so that there are no
longer any air spaces between them. Then this collection of particles
is indeed a uniform material medium, possessing as a whole a refractive
index m = n - ik. The absorption coefficient = extinction cocfficicnt
of this medium is obviously

a = 4ne/). (n2)
m

e T NI T G T e - [ SR ey ——————
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This follows from the behavior of a plane wave exp i(wt-2mm z/))
traveling in any direction, say, the z-direction.

In some work, the plausible hypothesis has been made that o should
be related to a simply by the ratio of the total volume occupied by the
random scattering medium to that occupied by the same total number of

! . 6 8
particles arranged as a uniform material medium. 75 That is, the

hypothesis is

e

Nv @ = Nv (4mn/2). (D3)

That this hypothesis is plausible follows from the reasoning that
the amount of energy absorbed by a particle should be proportional to
its volume, for a given incident radiation field. However, it is clear
that the absorption by a volume element of a substance is proportional
to the local intensity inside that volume element, not to the incident
intensity on the element. If the (average) particles in a random
scattering medium are compressed so tightly that the medium becomes
a true mat rial medium (no boundaries, no diffuse scattering), then
the local intensity in each volume element which was subtended by a
given particle is completely different from the local intensity which
existed inside the corresponding volume element in the random scattering
medium. TIn going from scattering medium to material medium, local
intensity is not invariant, which it would have to be in order that
the hypothesis be valid. Note that it is the single-scattering local

intensity that is considered here, because the absorption coefficient
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of a random scattering medium is defined in terms of a layer of
particles so thin that multiple scattering in that layer may be neglected.
Therefore, the question of whiather the local intensity changes can be
answered by single scattering theory, e.g., Mie theory for the spherical
particles considered in this work.

Combining Eq. (D1) and the hypothesis, Eq. (D3), yiclds the

equivalent hypothetical relation

5
= 4
% bs v/ . (n4)

This hypothetical relation is expressed entirely in terms of Mie
theory parameters, and may be cliccked by that theory alone. Several
examples will serve to show that the hypothesis is valid only for small
particles whose refractive index is close to 1, and badly violated for
other cases.

14 " : :
Van de Hulst gives the following approximate expression for O s®

valid for (2rr/)x)?<<l, for any m, for a particle of radius r:

2 . e
Bty = O {”r7 sEal s i-(z"r\ h ("‘,—1)? m 4+27m+38

A 2 5
m +2 15\ 2/ mz+2 2n12 + 3
(D5)
2nr, 4
oy}
T, TN T SRR G TR AT 3 ey e
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case i) (2wr/A)2 << 1, n = 1, ¥ << 1. Then only the first term

2
in Eq. (D5) contributes; Im((n?—l)/m +2) = =2¢/3, an! S bs

3
([”yr /3) (/;n/A)p( = /rnp:v/A’ in agreenment with the hypul]l(‘.‘»:i!;, ]':q. (h/b).
case ii) (2nr/))? <1, n=2, k << 1. Then Eq. (D5) yields,
after some arithuwetic,

GabS = ([‘“KV/)\)(';“ ¥ ‘({E(Zﬂr/)\)‘?), (N6)

It is seen that, if (2wr/)) << 1, the hypothesis, Eq. (D4), is violated
by a factor of 2; that is, using Eq. (D4) aud an experimentally deter-
mined Oabs = a/N, one would predict a value of ¢ only half as large as
the actual value. For (2wnr/})) = 1, Eq. (I°) seems to agree with the

hypothesis, but the neglected terms of 0(2rr/A)" and higher in Eq. (D5)

make Eq. (D6) invalid for (2rr/x) = 1.

The general case, with both 2mr/) and m allowed to have any rcason-
able values, cannot be analyzed except by use of the full Mie theory. For
example, in the limiting case of very large scatterers (2nr/X >> 1),

the asymptotic relation from Mie theory is

- wadra o "
¥ b sl mo) Ve @! wo), ()fmu_]. (n7)

The hypothesis, Eq. (D4), would thus require
16v0/3x £ (1)
Rokid o A= ."(\)o ’

which is clearly very badly violated for 27r/X >> 1.
Standard Mie theory computer algorithms, such as thosce used in this

work, can accurately and easily predict values for Oobs® ©
<

O
bs sca’ ext’®
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at any 2, given i) the optical constants (ni,b‘i) of the type i partic!

in the medium to be modell~d, and ii) the size distribution fl,(r) of

each type of particle. Unfortunately, it is not so casy to invert these
calculations, not even in the simplest case of a monodisperse collec-
tion of one optical type of particle. In this simplest case, for example,
suppose the real refractive index, n, is known, and the radius r is
known, for a constituent particle. If there is at least an order-of-
magnitude feeling for what the value of the imaginary index ¥ ought to
be, then the standard computer algorithms can be used to search around
the expected value of k until that value is found which reproduces the

experimentally determined o But this kind of search increases

abs’
immensely in complexity as the structure of the medium increases. 1In

order to use this method practically, it would be necessary to know the
n., fl,(r) for all the types of particles in the mixture to be modelled,
as well as the 5 for all the types but the one of interest, which is

the value that this method would be attempting to determine. Alterna-

tively, and much more simply, one could perhaps experimentally determine
(1)
abs
Oabs for the mixture. From (Al), then, for an n-component mixture,

the o separately for all the constituents of a mixture, and then the

n
(i) () (i)
. -y = No - \ = . )8
N].Jdr f‘i () ﬂabr;(l) = abs E = j”:lhs; Ni”nhs B
L S
This equation has a known value of Uy ™ Nj”'(xll»')’ only if i) it was directly

measured by determining a, in a single-component medium (usually not
i

practicable), or ii) the values of ¢ and nE}:?

\ , j # i, were determined
ans

experimentally by determining a and “1" and the same size distributions

TN TN YR e T L T e —— e ———— . g — - — = o — — —
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were kept for all components throughout. Then, if I'i(r) and n, arec
i
! knom reasonably well, and k., is known within order—-of-magnitude, the
i
Mie theory algorithms could be operated in the above scarch mode to
determine k,. Tor example, suppose the diffuse reflectance experimental
i
. teol uses a sample which is a mixture of barium sulphate and just one
other cowponent, say, carbon. Imagine that o 1 (carbon) could not be
abs
' found directly by experiment. Then the first equality in Eq. (D8) would
be used. Nov, if component number 1 is carbon, number 2 is barium
; (2) .
sulphate, and if a, = N, © and o = No for the mixture have been
2 2 " abs abs

determined by reflectance experiments, then, from Eq. (D8)

abs abs 2 abs

0(]) = Idr f.i(r) 0;:}:(1') = (Nl)‘]INu, ~N 0(?’)] . (M9)

and the search mode could be used with this relation, to determine v
for carbon, provided f(r), n, and N for the carbon in this mixture
were quite well known. If all the carbon particles had (2ar/A)<< 1,
then the first term on the RHS ¢f Eq. (D5) could be used, weighted with

fl (43) &
(1) Gﬂv] mz—l
P Tm( 5 = (h10)
FEE m +2

where vy - I(Irf](r)/o7|r3/”§. This can be solved easily for k, if n and

V_ are known.

1
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APPENDIX E

RADIATIVE TRANSFER THEORY IN ONE DIMENSTON

This section is included because it illustrates simply and clearly
three very important fundamental points: i) the connection between
imaginary refractive index and absorption cross-section, ii) the
transition from wave theory to radiative transfer theory, iii) the
correct difference rather than differential equrations of radiative trans-
fer theory.

Let the streiched string be the one-dimensional physical system
which supports wave motion. Consider first a uniform string of mass/unit
length p, under tension t. This string supports transverse oscillations

u(x,t) which obey the wave equation
U -—2 - R e——— (‘j])
and which have fundamental solutions u(x,t) at a given frequency w:

iwt -ikx ikx
' u(x,t) = e (A+(- g A e

Y, k = wlc, c2 = 1/u, (E2)

where A, are undetermined complex-valued amplitudes.
Consider another string, also under tension T, but with mass/unit

length My with oscillations which satisfy

2%u T du 2%u ;
My 2+»1: IYM = T 5 - (E3)

Here, the term /1—1 Ty du/dt is a fyictional term, representing absorption.

1

The fundamental solutions u(x,t) at frequency w are
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Oimt ‘—imkx imkx

(A e + A e ), k = w/c, (E4)

u(x,t) = - r

with m = /n-iyan =n = fe, £k 2 0, n = '617;' These choices of sign
ensure that a traveling wave is damped in its direction of travel.

A wave traveling in the positive x-direction has the form

i —inkx =2mex/X
oot | inkx E mex/ (E5)

vhich shows that the wavespeed on this string is c¢/n, and the extinction

coefficient is 4mk/A. For small y, (yn/k << 1), n = n, and 4mk/X = vy.

1. Single Scattering

Now imagine a piece of the frictional string of length r, inserted
between infinitely long segments of the original frictionless string.

This situation is exactly analogous to that of a particle of radius

; . X + dwt ~ikx
r, refractive index m, in vacuum. Let a wave u](x,t) = A] e g
- (’jmt ikx
; e

2

be incident from the left on the segment, and a wave A be

incident from the right. Boundary conditions are continuity of u and
du/3x at each interface. Application of these boundary conditions vicelds

the matrix relations

+ L
A, A

. (E6)
Ay @

=y ” " v s
where A? is the complex amplitude of the right-traveling wave just to the

right of the segment, and A

1 is the complex amplitude of the left-

traveling wave just to the left of the segment. The matrix M is
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‘ 1 1+m 1-m (_-1kmr 0 mhl m-1 |
M) = — ’ ] ’ (£7)
4
- \]-—m 1+m/ 0 Ckar m-1 nr-1
. Note¢ that
' det (M) = 1. (E8)
Consider the case A; = 0 (no wave incident from the right). Then kEq.
. (E6) yields
' = b b2riatie o it 12 2 i ; Tk
Ri 2 IAll /lAll |1121| /|1\122| reflection coefficient
. = ba¥1271:7T12 o 7 = W
i IA | /IA | = ]./IM | = transmission coefficient
2 1 22 (19)

R is the fr.oction of the incident power which is reflected; T, the
' fraction which is transmitted. If m is real, R+T = 1; since m is complex,
the quantity

. A= 1 - (RHT) (£10)

is the fraction of the incident power which is absorbed. This absorption
fraction A is the analog of the absorption cross-section of a scattering
particle in 3 dimensions. TFor the case k<<1, 2wr/i<<l, but n arbitrary,

the above equations yield

A = (4ukr/A)(n). (E11)

For n=1, this is the exact analog of the hypothesis, (FEq. D4), Vs

4rwev/), in three dimensions. Here, just as in three dimensions, such a

hypothesis is badly violated in general.

- MmO A AR O W e
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2. Transition to Radiative Transfer Theory

Consider a collection of the absorbing segments described above,
inserted at random intervals, with no overlap, in the original fric-
tionless string. The distribution of these segments is to be homogen-
eous, which means that there exists an average intersegment spacing, £,
and thereby an average number of segments per unit length, N = 1/4.

th + = Sic

Consider the n segment. Let (Ap, An+]) be the complex amplitiles

of the waves incident on this segment from the (left, right), respect-
=, ; -

ively, and (An, An+1) be the complex amplitudes of the waves traveling

away from (scattered by) the segment on the (left, right), respectively.

These amplitudes are related by the matrix M, as in Eq. (F6). Solution

+

- + -
in terms rields
1 A“) in terms of (An, Aan) vield

of Eq. (E6) for (A

"++1 & Mo A:
3 e e (E12)
- M, = )

A 22 = 1 B

’ 3 o
has been used. These amplitudes A ..

il e s = oM )
where the equality Ml;)_ P21 % ‘

are the amplitudes of the various waves at the appropriate interfaces
th i 1 ;
between the n segment and the frictionless string.

The randomness in the segment placing means that there is zero

- + . - 4%
correlation in phase between A and A . This means that < A A
ntl n ntl n
where < > expectation over all possible postions of all segments,
Taking <'/\’ ?5 ]+ ¥ <|/\-|;'> Y etc., and using Eqs. (E9), yields
o ntl n n :
4 + - ~ - + .
=TI <+ RI y & =TI P RE_ (E13a)
In +1 n n-tl n n+l n
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*
intensities I

Solving these equations for the
ng these equation o ¢ L

yields

+ + 2t s B o -
- I = -(-MRY/TI + =1 =z -(1-T)T + R
n+l 1n (1-TH /l)ln T "n ( ‘)In - {n'
(E13)
- - 1 R _+ - +
-1 = (-1 i A ST = L
In+] n ('l‘ ) T "n ( ) n n
where the approximate equalities follow for R<<l, A<<1, T<l. Here,
- : & = : S e .
the intensities Tn+1’ In+1 are the intensities of the wave distur-—

E th th . :
bance at any point between the n  and (n+l) segment; similariy for

+ =
Lo I
n

A This follows because the string is frictionless between segments.

Therefore, if the medium is imagined to be divided into cells of length

£ =N , with on the average one segment anywhere in each cell, the

Y
intensities T can be taken as the intensities on the right cell boun-
n

+1

&
dary, while I;] are those on the left cell boundary. Dividing both sides

of Eqs. (E13) by £, treating the case R<<l, A<<l only, aund making the

+
transition nf - x = continuous variable, ]n > I1,(x), yields

dT+
e e 2 1 G SR
dx (S + -2
(r14)
d1
—= = (K+S)T_ - ST,
dx ( ¥ +
where
K = NA, S = NR, (F15)
are kept constant during the limiting process. These are radiative

transfer theory equations for this model one-dimensional system. Note

that they have the same form as the KM equations (B1), and that the

significance of (K,8) is the same: In both, K = absorption/unit length,
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S = back-scattering/unit length, in the medium, (except for a factor of
two which is geometrical in origin).
However, for strongly absorbing or reflecting segments, the full

equalities of Eqs. (I!13) must be used. Letting nf > x = continuous

.’ —_

"
variable, 111 = Ii():), In+1 = [i (x+12), these equa!ions reduce to

I+(x+2) = (],—:1)T+(x) + bI_(x),
(E16)
I (xt) = —1)1+(x) + (1+c)1._(x),
where
a = (T-T4R%)/T, b = R/T, ¢ = (1-T)/T. (£17)

Equations (E16) are difference equations rather than differential

equations. The desired physical solutions are the "smoothest" functions

+
I+(>:) which yield the correct ln on the points x = nf.
These equations may be solved by normal mode methods. let
E (%) = A, eP* in Eqs. (El4). This results in the eigenvalue equations

_._.p? b A
l-a-e o (F18)

¢
-b 1+(:—-L-p' A

Solution of this for the eigenvalues Py 9 and eigenvectors yields
i

=
- % Sk
1’1,2 ') Rn(]lq]’?), A__(]’:)) b ('IHI],'Z)A+(1,?)’
(119)

wvhere 1/2

1,2 = -%(('--.1) to[e-a 4 'J"(v--:x)zl X (E20)

q

The fundamental solutions are the superposition of these normal modes:
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P, X Py
Bl = By 7 A,
1 Py¥ Py*
= b [ (atqy): atq. . 12
I (x) =b [(alfql)\+l e + (a qZ)A+2 ¢ ] (E21)
It is simple and straightforward to verify that these solutions satisfy
(the first equalities) in Eqs. (E13), on the points x = nf.

It is worth noting that the general solution of Egqs. (E16) may be

written
P]X sz
e fl(x) + e fz(x),

fl

I+(X)

X p,X

= -1 Py 2
I_(x) b [(n+q1)e fl(x) + (a4q2)0 fz(x)],

where fl(x), fz(x) are any two functions periodic in x with period £.

"smoothest" functions

Since the desired physical solutions are to be the
between the points x = (n?, (nt+l1)f), it is necessary to choose fl(x) =
A+l = const., fz(x) = A+2 = const. The possible oscillations represented

by non-constant f (x) result from the extra (infinitely many) degrees

1554
of frecedom introduced in going from the correct discrete equations (F13)
to the continuous difference equations (E16); these extra degrees of
freedom are clearly spurious.

It is instructive to note that, if the difference equations (E16)
were first converted to differential equations by the standard method,

using Lim(1*0)1(1+(x+?) - T+(x»/9] d[+/dx, etc., and then solved, the

results would have been

1, /dx = 9,"(—“1+ +bI ), d1_/dx = a*‘(-b1++c1_),
(F22)

with solutions
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q]x/ﬂ qzx/R

I,(x) =A, . e + A e
-+ +1 +2 (£23)

-1 q]x/Q qzx/ﬁ
I (x) =D [(a+ql)A+] e + (n+q2)A+?c ]

where Lim(£*0)[a/%, b/s, c/2] constants. Inspcction of Eqs. (E19),

(E21) shows that these expressions are the correct solutions only if

|<<l, since then p = g3 ln(]+ql 9) (2. That is to say,
52

|q1,2 1,2 2932
only if the changes in T, over one cell are small are the differential
equations (E23) equivalent to the difference equations (E16). 1In order

for these changes to be small, | must be <<1. If both A<<l, R<<1,

la; 5
then the differential equations (F23) are indeed just the equations
(E14). Note that Iq],2|<<] follows if only A<<l, regardless of R. 1If
only A<<1l, but R < 1, the differential equations (E22) are correct, but
they are not the same as the KM equations (El4). This point is made
clear by an example in Appendix T.

The solutions (1E21) of the difference equations (F16), subject to
the boundary conditions analagous to those for a plane parallel sample

of thickness d in 3-dimensions,
1 (d) =0, T+(()) =1 (E24)

yield the following expressions involving the reflectances R(l’ R

1-R R
| « w
R, = (atay)/b; (p)=p,)d = G yi) (1:25)
4 “ \(] .\u‘

wvhere R, = 1 (0) for a sample of total length d. 1In the limit A<<1,
C i

1

R<<1, these reduce exactly to the form of the EM relations (B?),
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¢ Q=R # R, 1-R K
E = ‘—Z—R;-t_- > Sd = ;?‘ ﬁn(-j—:ﬁ:;/*}—{'m), (fﬁZﬁ)

”

where K,S are defined here by Eqs. (115), with N = g~

It is enlightening to contrast the two solutions by means of a
numerical example. Consider strongly reflecting, moderately absorbing
segments, with

A=@G.1, R= 0.8, T = 0.1. (E27)
Then, from Fqs. (E17), (£19), (E20),
a.= 7.3, b =8, ¢=9; 9 5 = 2.40, -0.70;

Py o= 1.22/9, -1.20/%. (E28)
3

c

The correct relations, from Eq. (E25), are then

1-R R

d «

R = 0.825, fn(y—m) = 2.42 d/2. :
R = 0.825, gn(l"\'d/“m) 2.42 d/2 (E29)

If the standard KM relations (E26) were used with these numerical values,
the relations (E25) would read
1-R R

= 0.6 n(—"7—) = 0,825 d/1 :
R_ = 0.61, Fn(l—kd/'i..) ( a/ (£30)

which are significantly in error. On the other hand, if the incorrect
solutions (E23) were used in the boundary value prohlem, without requiring

l<<l, R would come out to be the correct value (E29), since it
o

lql,2

does not depend on p However, the second relation in (E25) would be

Ly 2"

1-R R 3
il ¥ 53 > & ey O )
£n(1_R 7R ) (q] q?) - Yol /R,
a’ R
S ——— I—— — R — it
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different from both the second relations in (E29) and in (E30).

In sum, in this appendix it has been shown that, for a onc-dimensional
random scattering medium,

i) Radiative transfer cquations follow directly from wave theory
equations if there is zero phase correlation among the waves incident
on any scatterer from different directions.

ii) The correct radiative transfer equations are difference rather
than differential equations.

This latter point is exploited in Appendix I.
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APPENDIX F

CONVERSION OF FRACTION BY WETGHT TO NUMRER DENSITY

In a multi-constituent random scattering medium, the given data
are invariably the total mass density, D, of the actual medium, and
the fraction by weight, P of each constituent number i. For use in
Mie theory algorithms, it is necessary to know the number density
Ni of each of the constituent particles.

Let oi be the mass density of particles of type i, and vy be the
average volume of a type i particle. Then, for a sample with total
mass M, total volume V, mass m, of ith constituent, and n, = total

number of type i particles,

&= Yy = —_— = . F
Pyl NiPiVy kL)
Solving this for Ni yields
N. = p.D/p.v,. (F2)
i i idi

Now

v, = Jdr fj(r)(hﬂr3/3). (F3)

where f,(r) is the size distribution of type i particles. Therefore,
i

in order to e¢valuate N,, the size distributions must also be given.
i
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APPENDIX G
SIZE DISTRIBUTIONS

4
Four well-known particle size distributione were programmed for

use in this work. These are the two-parameter gamma distribution, the
bimodal gamma distribution, the log-normal distribution, and a power
law distribution. The unnormalized distributions, n(r), and the nor-

malized ones, f(r), are defined and described below.

i) Two-parameter gamma distribution

-3
rl/b r exp-(r/ab), Iy £ ¥ 5 2,
n(r) = (G1)
0 s T €1y 0T,
If By = o, r, = @ then

4 = d<r> = 2ro, b = 062/(1+202), o2 = (<r?> - <r>?)/<r>?

where e modal radius = a - 3ab, <r> = mean radius = a-2ab, <r’> =

2
mean square radius = (ab) (% - ])(—l]-)- -2). If r_ >0, or r,<e, or both,

1

then the relations between (<r>», <1?>) and (a,b) are altered, but ¥ =
O

da~3ab unless r, > £ OF T, < T .
1 0 2 [6)

ii) Bimodal gommo distribution

n(r,a],b)
TR PR e

) of
f Zdr n(r,nl,b)

*1

where n(r,ni,b) is a two-parameter

n(r,u?,h)
e (2)

Y.
[ zdr (A (R, )

*3

gamma distribution with parameters

(ni,h). Here, half of the particles are in cach mode.
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iii) Log normal distribution

-1 2.,
r exp[l-(&n r/z'),) /ZO?J, rlgrsr

2
n(r) = (G3)
0 » TSIy, 1T :
If r, = o, r, =, then
2 2 2
-04/2 2 =20 -0 1/2
<r> =r e / , <r2s> - e 5 = r e = <r2s / .
g g o &
2 2 2 ~g2
and |(<r'> - <r>’)/<r> l = ]l-e o TF r > 0, or r, < o, or both,
these relations are altered.
iv) Powver law distribution
r_a < <Y
min ~ = max
n(xr) = (G4)
I SRS A S B
min max
r2—a " r?—n
here <r> = . a#1,2
2-a 1-a l-a .« ° e
r -r
max min
2-a 2-a
o
s -, WA - | S FOaL
2-a)in(r o N
( il mnx/ mln)
1-a)in(r ]
( )an( mn.\:/ min dote iy
<r> = ——— L L a = 2,
1-a -a
T gl
max min

The normalized distributions f(r) were calculated numerically from
y
f(r) n(r)/[ dr nlr}. (G5)

"

Several other distributions could be added casily to the computer program.
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P((‘) (u,p') FROM p(cos0)

In this work, the single scattering phase function p(cosf) was

first calculated from Mie theory for sone set of scattering angles O

K’
k =1,..., L. What is needed for multiple scattering calculations in
this study is the azimuth-averaged phase function
VAl
o 1
p( )(u,n') - J d¢' p(cos0), (K1)
o
on some set (u],,ui), 2, = Y 0vey No Here,
cosO = uu' + /]~|1? /]—u'7 cosd'. (H2)

vy i ! 15
,u') is that of Hansen

(0)(u

The method used in this work to obtain p
- . 4 ~.e . '
and Hansen and Travis . First, choose the particular (“i’"’i) values

desired. Tor each pair of values, do the integration in Eq. (H1)

points ¢' = on’ with weights Vo =Ly e 5@

0
"((’) (] =
p (“1’“j) : X

n=1

w p(e.u' + »/,l~1n:,) /,1—11',"\ cosd ). (13)

n i i i n

However, the value cosO ,, = u,u' + v/];-U? /!-11'.:) cosd might not be
nij i] i | n

one of the ('u:;(\k for which p(('or:(‘k) was calculated. If not, linear

interpolation is used between the two adjacent (‘os:(\k to find p((:os”n”

After i-)(n)(ui,n'i) is found by this method on all points (ui.u',)

which are desired, it is renormalized by using

' nunerically. For example, using Gauss-Legendre quadrature on the

T — T K o G S gy P P S — v e—— > . e - - - S
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1
p(o)(u,u') = u, 5(0)(11,11')/[ ay 5(”)(11,11'). (14)
]

. + o N : :
The function p( )(u,u') so defined is thus correctly normalized to W, .

' This renormalization helps to remove errors that may have been intro-
duced by the interpolation.
|
bt (8] - .
l This method of obtaining p( )(u,u') is considerably faster
' computationally than the method which uses Legendre function expansions,
for a given accuracy.
a8
I
]
' |
|
l
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APPENDIX T
NEW EQUATION OF RADTATIVE TRANSFER

5
In the usual derivation® of the standard RT equation (A9), there

is no analog to the difference equations (E16). However, the derivation
of Eq. (A9) given in Appendix A does pass through such an analog, namely,
Eq. (A6).  The considerations in Appendix E lead to the conclusion that
the difference equation (A6) ought to be a more accurate radiative
transfer equation than the standard differential equation (A9), for
close-packed strongly absorbing or strongly reflecting media. Therefore,
(A6) is tentatively considered as the new equation of radiative trans-
fer.

In what follows, consider only problems which are invariant to
translations normal to the z-direction. Then, the intensities in Eq.
(A6) may be written I1(zFu/2,u,4), etc., where p is the cosine of the
angle between s and the z-direction, and ¢ is the azimuthal angle of s
around the z-axis. For applications in which only the total transmitted
and reflected fluxes are needed, the ¢-dependence of Eqs. A6 may be
integrated out, just as was done in going from Eq. (A16) to Eq. (A18).

Eq. (A6) then reduces to
1
I(z+0pu/2,y) = (]-—yQ)I'(z-F.p/?,u)F(YQ/Q)J du' p
-1

(ﬂ)(U,h')T(Z*fu'/Q,u').

(11)

Since z is a continuous variable, let z » z + &p/2 in Eq. (11).

The resulting equation is
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1
I(z+2u,u) = (A-yL)I(z,u) + (y!’,/?)[ dp' p(o)(u,1:')l((x+ ';_"9(u—n')._u').
- (12)

Let there be an incident beam in direction Mo at z = 0, so that

1 -
Iin(o,u) -5 F 6(11—;)0). (13)
Then, let Iin(z,p) satisfy I(ztlu,n) = (1-y2) I(z,u). Then

Il,“(z,u) - F 6(11—110) explz T(u)], (14)

N

where

reu) = (o)t fn(l-y2): (15)

note that, for y%<<l, T'(y) =~ - y/u, the usual form. Then, let

2T ST (2 s b - () (16)
in di

in Eq. (I2), where Id'i(?"ll) is the diffuse intensity. This yields

Idi(z+§‘,u,u) = (’I-—Yi’,)ldi(z,\t) + (y2 F/l;)p(o) (‘5,“0) &‘_XPU'(‘.'O)(?F %i(wq«.n))]
1
' (o) ' 1 ' ' -
+ (YP/7)I du' p (u,u )T(H (z + -:;9(11—11 ) IR TR I (7))
-1

This difference equation is the analog of the differential equation (A19).

It is not clear how to solve this equation by a doubling method,
which depends on the choice of a starting layer so thin that the last
term above may be dropped for the transfer across that layer (sece

Appendix J). Here, the minimum thickness layer which can be chosen in




principle is one of thickness %, because that is the thickness of a
} monoparticle layer, and th. whole derivation of the equations in terms
of particle cross-sections probably makes rno sense for thinner layers.
‘ Now, if yf<<1l, which implies that both a« << 1, B << 1, then the differ-
' ence equation (I7) reduces to the standard differential equation (A21).
But, if accuracy of 17 or better is desired, then the conventional
' equation (A21) should not be used for yf > 0.01.

A many-flux solution, similar to that done by Mudgett and
Richardslo for the standard differential equation, may certainly be
done; this is quite cumbersome and time-consuming for more than four
fluxes. However, a combination of an accurate many-flux (16 or 32-flux
might be sufiicient) solution for the starting layer of thickness £,
vith a doubling method solution for the larger thicknesses desired,
seems feasible.

A Monte Carlo solution is of course possible. TIn fact, it seems
likely that the standard Monte Carlo technique is already solving this
difference equation, rather than the usual differential equation,
inasmuch as the Monte Carlo technique looks at the radiative transfer
collision by collision. If so, discrepancies should exist between
Monte Carlo method results and results of other methods for the standard
equation, for closely packed media containing strongly absorbing or
strongly reflecting particles. This point remains to be checked in
future wvork.

The two-flux theory of Lquation (I2) may be obtained in a

manner similar to that in which two-flux theory of Eq. (A18), the KM

— m——— - o E 3 AR s B o e .
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theory, was obtained in Appendix B. Make the approximations

I(z+2p,p) = I_'_('/.+£1_|) = 'I+('/,-H‘,/.'7), u >0

‘ (1)
I(z-2u,-1) = ]__(;-,~SL;) =T (2-2/2),n >0

. 1

vhere the second equalities follow from the definition p = fdu o= -l .
‘ o

Then Eq. (I2) reduces to the pair of coupled equations
. I+(z+9,/2) = [],—(u-l—ﬁ#)2]]+(z)+([<_2)I_(z~Hl/2) ,
l I_(2) = (8_D)T, () + [1-(atp_)L]T_(2+8/2), (19)
l where 1 1
7 B, © % Jdu Jdu' p(o)(u,‘u'), (110}
g o o

just as in Appendix B, and a, B, Y have the same meanings as in Appendix
i A, with B+ 8 = B, s0 Y—ﬂ,y = otb .
Define, as in Appendix B,
1

471(7,) = J dy 1 I‘}(z) = ;- I_}(z). (111)

o
Then Eqs. (19) reduce to
0, (z40/2) = T ¢, (2) + R ¢_(z+2/2)

(112)
¢ (2) =R ¢ (2z) + T ¢_(2+2/2)

where

T l—(n-l-[’,_)f,lx' Bty A af, (113}

T —————— T R b i e v - e
o v b g
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satisfy A+ R+ T = 1, and have the significance (T, R, A) = (trans-
mission, reflection, absorption) fractions for a layer of thickness 2/2.
The presence of £/2 rather than £ in the arguments of $_ is a result

of the averaging over u done in obtaining Eqs. (I9). Note that, if

R << 1, A << 1, then Eqs. (I12) reduce to the KM equations (Bl), as

expected; the presence of £/2 rather than £ in (I12) is crucial for this.

Solving these equations for ¢, (2+£/2) in terms of & (z) yields

¢+(z+l/2) = (1~a)¢+(z)+h ¢ (z)
(114)
¢ (z48/2) = -b ¢+(z) + (I+c)¢ (z)
where
r 2.2 : s, " .
a = (I-T°4#R°)/T, b = R/T, ¢ = (1-T)/T, (115)

just as in Eqs. (E17). Since these difference equations (I14) have the
sane form as the Eqs. (E16), the results and solutions of Eqs. (E16)

may be applied directly here. The solutions are

¢+(z) = A+] e + A+q e 5 (116)

P.Z P,

-1 2
0_(2) =aly [(a+q]) A+] e 4 (a%qz)A+2 e 1

wvhere A A are undetermined cocfficients, and where

+1° 42
?
Pr,2 "% gn (1 + ql'?),
A RPN BNy E 3
q"2 =3 (c-a) * [(c=a) + i (c-a)"] : L)

For a slab of thickness d on a totally absorbing background,
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B_= (;Hq?)/b s (Pl—p2)d = In (il.».'l /~ <). (118)

These are just the result: E19-E21 and E25, exc pt for the factor of 2
in the definitions of p]’z. If T <1, R << 1, A << 1, Eqs. (I18) go
over to the KM Theory expressions (B2).

A few examples are most instructive here, and show that, in some
practical problems, the results predicted by the corrccted equations
(T4, 118) differ significantly from those predicted by the standard
KM equations (B1l, B2).

i) Consider a powder made up of small carbon particles. For

such particles, R << 1, but A < 1, so T<<1l. Let T = 1-A-R, so, from

Eq. (I15),

2 2 s
IA\' \\ ' { y ?'
ca- WD LR A, RGN (i)
3 (1-A)"

to O(R). Then, for A = 1/2, say, c~a is not <<I, is quite

S0 (11’?
" 1194 y - S
different from (c-—a) , and p, , # 2q /%. This means that the
L2 |

relations (I118), among (‘"‘(.,‘ R and the coefficients ({\'_,(1), are quite

d)
different from the KM relations (B2). A value of A > 1/2 is quite
realistic for carbon powder.

ii) Consider the model powders treated in this work. Tn all of

these, t''» strongly reflecting Bafo, was by far the majority component.
+

For example, in sample IT, l‘.:'.ft(\/‘ t carbon, the values of (!-",(1,0) may

be found from Tables 2, 3, at wavelength 2 = 0.6 um:
- - -1 -1/3 "
a = 5.21%10 " (ym) 1, fR 0.102Cum) ", £ = N / = 2,77 um.
- eLea e - 3 -
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Therefore, from Eqs. (113),

4

R = 0.283, A= .513x10 ', T = 1-R-A.

Since A << 1, we expand the parameters (a,b,c) of Eqs. (I15) to 0(A).

The results are

2RA R, A(1-2R+2R%)
G R E g
] (1-r)~
R RA 2RA1/2
= —— -} - 2 4+ (—— ~ 2
bl 2 A N g Sy ety By o 2, Sl
(1-R)
Then, from Eqs. (1I12)
R = 1_(25!123291/2 ﬁi(ggﬁ)]/2, 9n(i:E§:f_)
o R > 2°1-R - 1-R /R **
Solving these for A/R and R yields
2
(1-r ) 1-R R
1-R @ 4d R i d
—_— = —_— —— ———— = ——— ———— e )
( R YA 7 S (l—R) = Sln(J_Kd/Rm). (120)

These relations are to be contrasted with Eqs. (B2) of the KM theory,

which, for A<<l, yield

-R -R R
A (l co) ) -' ] Id o
R S 2 ;

14
Mpeloo (=4 (121)

5 =
o (¢} 0

]

Note that A = af = K&/2, R B_2 = S&/2. Comparison of (120, 121)

makes it clecar that, for given data (Rd’Rm)’

R)

- = (R . ) < Pp
(l—R new (I)KM ¥ know KM o
(A)new i3 (A)KH'

A Mool i, T IR v x—
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That is, the KM theory prediction of R is too high, by a {actor
1/(1-0.283) =~ 1.4 in this numerical example, but the KM theory prediction
of A agrees with that of the corrected theory. This latter equality

is fortunate for the main purpose of this work, which was to check the
supposed equality of the KM coefficient K = 2A/%., calculated from the

KM eqs. (B2), with the absorption coefficient 2¢. Note well that even

though |<<l in this example, the results do not agree with those of

la;
the KM theory; for this agreement it must be true that both A<<l, R<<l,
which was not the case in either of these examples.

It is worth remarking that, for very strongly reflecting particles,
especially for such particles of la ge radius, the usual assumption of
neglecting the multiple scattering in a monoparticle layer may be in-
valid. This assumption was implicit in the above derivation of the
corrected two-flux equations. In order to take into account such effects,
at least a 3-flux set of equations must be used, or, for accuracy, a
many-flux set. It is also likely that the conventional reasoning which
allows replacenent of all the different particles in the medium by
average particles (see Appendix A) nceds to be reexamined if y2 - 1.
These are topics for future work.

In sum, the above two-flux theory of the difference equations
(I2), and the two-flux theory of the differential equation (A18), (the
KM theory), yvield significantly different results, for strongly absorb-
ing or strongly reflecting closely packed media. This implies that the
accurate solutions of Fq. (I7) and Eq. (A19) will be significantly

different, for such media.
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Previous atiempts by other authors at discontinuous theories of
radiative transfer are outlined in reference (13). These theories are
only the two-flux approximations, and the individual particle scattering
and absorption cross-sections do not secm to be an integral part of

i the development, although thie philosophy of these theories is similar

to that of the new theory presented here.
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APPENDIX J
DOUBLING METHOD
In this appendix, the doubling method equations used in this work

are derived. The fundamental transmission equations for a plane para-

1lel layer of thickness § (optical thickness T = yf) may be written

1
I+(d,n) = J[du'[Tz(u,lz')l_*_(o,u') + RQ(n,‘,L')I_(d,n')]
o
(J1)
1
T_(o,u) = Jdu'[TQ(u,u')T_(d,u') + R Gu)T (o,u")]
o
where 1y > 0, and
I{(Z,u) = It'_(z,u). (J2)

Here, I+(z,u) are the total intensities, diffuse plus directly trans-

mitted, averaged over azimuthal angle ¢, and are defired by

T+(z,u) = I(z,u), w30; 1 _(z,w) = I(z,~u), w>O0. (13)

In symbolic operator form, Fqs. (J1l) may be written

1,0) =T, T,(0) + R 1_(®)

(J4)
I-((\) — TQ, 1_(\!) + RE I_‘_(U).

Consider another layer of thickness d, between z = ¢ and z = 28. Then
1+(?9) = T9 I,() + Ry L)

(J5)
I (%) = 72 1 (22) + RQ 74(R).
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But, for the total thickness 2%,

1,(20) =T, T,(0) +R, I (20)
+ 20 2% (36)
1(0) =T, T_(20) + R, T (o).

Combining these sets of equations yieclds

-1 L -1
) T,3 Ry, = RAT (1-RR)TRT,,

T =T£(1—-R£R Ry

22 [

which are the doubling equations in operator form. For example,

1 1
T.1. = Ia”' Tﬁ(u,u')Jdu" T, G, 37)
(e} o

vhere the ellipsis (...) stands for the operand, some function of y".

=1 ; :
The operator (]-R,Rf) is defined by its series expansion,
x L

1

(]_Rgpg) HFTQRQ + RRRRRQRZ‘ B e

(J8)

2
In practical computation, ten or fewer terms are kept in the above
series, and an estimate of round-off error is included, following the
. 4
method of Hansen and Travis .
In order to make use of the doubling equations, the transfer

matrices T‘_, Rp for a very thin layer of thickness %, so thin that

rultiple scattering may be neglected, must be found. For such a layer,

the scattering term, i}YJd)I' p(o)(;;,u')Tdi(x,u'), is dropped from
Eqs. (A19), and the resulting equation is solved analytically. The

TE’ Ry may be read off from these solutions; they turn out to be

m’&?""iﬁ;} TV TR T PR ahe ot e - e

= Jd..' SCu-u")(...) + fdu' Rp_(u,u')fdu" Rﬁ(u',u")(--.) S
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(it -1, ~ye/u' - -
TQ(F’L') i'L(lLH*}/5 % e &T) (e Y2/ -e Yp/“) + §(-n")e Y&/ u
PACTITAD R
(J9)
o -]
R, (uyu') - 1P -"-];—,;(-'- * 2 eexpove & + 1))
3 I S S o o

These expressions are finite for all uyn', but considerable care must

be taken in computation as either y or p' - 0, or as p > u'.

Numerical integration over é-function integrands can lead to

significant error. Tt was judged more accurate to write

Foowil o E (J10)

at each step of the doubling, where T contains the d¢-function oper-

£,in

ator. This expands the equation forv T2 to four terms, and that for

2

RZQ to five. For doubling from a thickness I. to a thickness 2L, there

results

-2yL/wu ~yL/n
e T T » . = 4 8 259 .
T2L 2L, di + §(u-u')e H TL Tl.,(” (r=11" )« 5
I11)
> T . caiity 2 S . T 'Y
where TZL,di’ L,di contain all the terms not proportional to ¢(p=u')

If the incident intensity is 6(p—uo), then the incident flux is
My For a sample of thickness d, the diffuse transmitted and reflected

fluxes arc

1
" = T - Fap
rdi devu I (M, Jdu/; Td’di(u,uo)\uu
i (J12)
|
u) e /i3 /i ’
O 4 Jd;nu I (h,u) J(h.vu R(l,di(“’“u)/{lo

O

T T T T R Y g T - s " —— e e
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-yd/u
and the directly transmitted flux is e . Therefore, the trans-

mittances and reflectance are

1 1
-Yd/uo

EAE L£2
= e s Tye ™ [du(u/uo) / Td,di(“’uo)’ R = Jdu(u/uo) /2 Gusp )

B, ;
direct di d,di

(e} [e]

For a pure scattering medium (no absorption), it must be true that

+ = . /
Fdsrecs * gy TR (J14)

This relation was used as an internal check on the computational accuracy.
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APPENDIX K

COMPUTER PROCRAMS

Two computer programs were developed during the course of this
investigation, one based on the Mie theory, the other oa conventional
multiple scattering theory. A short description of each program is given
in this appendix. Complete documentation and listings are available
from the author.

Both programs use Gauss-Legendre quadrature and double precision
arithmetic throughout, and both were thoroughly checked for accuracy.

, . . - 4
The Mie scattering program was checked against published results, and
against analytic results, and it was verified that, as the model sample
particles are taken further and further apart, the near field phase
function (Appendix A) approaches the far field one. The multiple scat-—
: : : et
tering program agrees with the results of an analytic calculation , and

satisfies internal checks for all optical depths < 1024.

1. Mie Scattering Program

Given the mass density of a model mixture of spherical particles,
and the optical constants, size distribution, and fraction by weight
of each component in the mixture, this program calculates the number
density of the mixture; the number density, near and far field differential
cross—-section, and the extinction, scattering, and absorption cross-
sections for each component of the mixture, and for the mixture as a whole,
using standard Mie theory algorithms, and the procedures explained in

Appendices A and F. It also calculates the phase functions on a chosen set

of scattering angles O.

';;—'—"._".?t"-‘ff-'aw TR TV NG TR S PR e o e e——




A detailed description of a typical Mie theory scattering calcula-
: : ; . 3,4 :

tion is readily available in the current literaturc . The major
differences between the program developed for this work and the PGAUSS

. 7
routine are as follows:

i) The logarithmic derivatives of wn(z), rather than the wn(z)

. . 18,19

functions themselves, were computed by backward recursion. Here,
the wn(z) are the Riccati-Bessel functions, the notation that of Van

3
de Hulst .

i) The output of the program yields the phase function p(0) on a

e

selected set of scattering angles 0, not the coefficicents of the Legendre

polynomials in the standard series expansion of the phase function.

2. Multiple Scattering Program

This program uses the punched output (mixture phase function,
p(0)) from the Mie scattering program, and computes the diffuse reflec-
tance and transmittance as functions of the angle 00 of the incident
beam and the plane-parallel sample optical thickness, using the doubling
method (Appendix J) to solve the standard radiative transfer equation
(A21). The program then uses thoce calculated reflected fluxes in the
KM formulas (B2) in order to compare directly the predicted values
(E,g) with the defined values K = 2a, S = 2f8_. The program also
calculates the quantitics Bi’ Pj(uo), defined in Appendices B and C.
The phase function p(o)(u,u') is obtained from the input p(0) by the

method described in Appendix H.




